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Designing a Challenge (1/4) -

* « CodaBench is an open-source platform
for hosting data science challenges,
benchmarks and competitions »

EDF NET LOAD DATA
CHALLENGE —

Edit Participants Submissions Dumps Migrate

ORGANIZED BY: Ecampagne N
CURRENT PHASE ENDS: 24 Mai 2024 A _02:00 UTC+2

* 130+ participants from EDF Group in 46
teams, on virtual machines provided by EDF

* Starting kits and GPU available

* Animate a data-science community at EDF,
get people working on a subject of interest

gsdabench




Designing a Challenge (2/4)

Motivations

Maintaining a balance between electricity supply and demand is
important for grid stability

Providing accurate forecasts for short-term electricity load is therefore
crucial for all participants in the energy market

The availability of new geolocalized data and individual electricity
consumption data can be exploited by models that are able to take
advantage of additional information and help in minimizing forecast
error
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« The increasing contribution of renewable energy sources brings
fluctuations and intermittency to the electricity market

» Complex representation of meteorological variables such as
clouds

» Installed capacity is not precisely known and production
measures are imperfect
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Subject & Data (1/3)

Objective

* Develop methods that can take into account regional data to forecast daily minimum and maximum net load* over France
Perimeter

* Mainland France (excluding Corsica)

Challenges

* Model renewable electricity production as accurately as possible

* Use data at different scales: regional and national

*Note that net load is defined as the difference between demand and renewable generation.




3 datasets: regional, national and price

12 administrative regions of France are considered

Subject & Data (2/3)

32 weather stations (appearing as black dots)

Half-hourly data
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e Test period = last week of each month + May 2022

e Covid containment periods (grey) have been invalidated
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Approaches

Geolocalized Data
* A natural approach consists in predicting the national net load using national data
* However, some regions do not behave in the same way (weather, economy,...) which can be hidden in a national forecast

» Aggregation of the regional forecasts can be done with a simple sum, but there are connexion problems

Net Load, Load — Production, Load — (Solar Power + Wind Power)?

* In practice, predicting all the individual components give better results

Mean predictions or Extreme predictions?

* Small or large resolution: predicting the mean and then taking the extremes or directly predicting the extremes (Scaled Student,
Generalized Extreme Value Distribution,...)?

 Number of data points is reduced when directly trying to predict the extremes

* Best approach is to consider a multi-resolution prediction: Amara-Ouali, Y., Fasiolo, M., Goude, Y., & Yan, H. (2022). Daily peak
electrical load forecasting with a multi-resolution approach. International Journal of Forecasting
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Evaluation

* Participants were evaluated using the following loss:

X 1 . o 1 X
Ly, g) = \/; 2221(11'1111 Y48d:48(d+1) — 1IN y48d:48(d+1))2 + \/E Zzzl(max Y48d:48(d+1) — Max y48d:48(d+1))2
e The loss function is the sum of the RMSE on the min and the max predictions of all days (a day = 48 instants)

Benchmark models
Participants were competing against basic benchmark models (trained on the RMSE of the mean predictions) to help them
evaluate the quality of their own models:
» GAM-1: a GAM (Generalized Additive Model) forecasting the net load
GAM-3: a GAM forecasting the load, the wind production and the solar production
CAT & xGB: a CatBoost model & a xGBoost model
FF: a Feed-Forward neural network model

YV V V VY

Mixture: a mixture of the above models



Contribution of each expert to the prediction

Solutions (2/3) 30000
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* In average, GAMs are the best performing 10000 ﬂ V h
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e ML-Poly aggregation outperform the

individual estimators on both the validation Loss (MW) Loss (MW) Loss (MW)

and test sets (except for GAM-3) Public Test Private Test Average Test

GAM-1 6226 8304 7265
* Weights are optimized on a validation set

and then frozen for the test set GAM-3 3946 4929 4438
xGB 14364 14383 14374
CAT 18969 19569 19269
FF 14824 13342 14083
Aggregation ML-Poly 4805 5091 4948

Aggregation Uniform 9200 8823 9012
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Participants models

14 teams/46 did a better score than the
baseline on the private test set

The best solutions compute new features,
perform a cross validation with multiple
models while tuning their hyperparameters,
and select the best model in average on the
folds

The Final Strike used a Light Gradient
Boosting Machine Regressor (LGBMR)

Les Equilibristes used two xGB models, one
for the load, and one for the production

The Data Rangers aggregated a GAM per
instant (7%), an xGB model (80%) and a
Bidirectional Recurrent Neural Network per
instant (BRNN, 13%)
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SoDataSum
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2747
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4929

Loss
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Average
Test

2664
3196
3046
3163
3051
3231
3347

4438
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Graph Neural Networks

CIFRE thesis between EDF and Centre
Borelli (Y. Amara-Ouali, A. Kalogeratos, M.
Mougeot)

GNNs can handle spatial data using graph
structures

We want to make use of the deep
relationships that exist between the
regions as their features are strongly
correlated

GNNs effectively compute representations
through convolutions using the
relationships within the data:

» Spatial convolutions  (adjacency
matrix)

» Spectral convolutions (Laplacian
matrix)

Correlation matrix from load Correlation matrix from temperature
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Graph structures

Statistics oriented: correlation and
precision matrices

Distance oriented: DTW and Exponential
similarity matrices

Time dependent structures

Explainability

Making explainable forecasts is a crucial
point for EDF, GAM models give both good
results and interpretable forecasts

GNNs can highlight links between nodes
and therefore important subgraphs can be
extracted:

max MI(Yg, Gs) = H(Ye) — H(Yq | G = Gg, X = Xg)
S

1.0
Auvergne_Rhone_Alpes

Bourgogne_Franche_Comte

Bretagne - 0.8
Centre_Val_de_Loire -
Grand_Est - 0.6
Hauts_de_France -
lle_de_France - .
Normandie - 04
Nouvelle_Aquitaine -
Occitanie - - 0.2
Pays_de_la_Loire -
Provence_Alpes_Cote_d_Azur -
- 0.0

Bretagne -
Grand_Est -
Occitanie -

lle_de_France -
Normandie -

=
=3
™~
<
=
L5
z
=]
o
[

Franche Comte -

Hauts de France -
Pays_de_la_Loire -

Nouvelle_Aquitaine -

pe

Centre Val de_ Loire -

Auvergne_Rhone_Alpes

Bourgogne
Provence_Al




Perspectives (3/3)

* Promising results on the load
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Annexes (1/3)

Generalized Additive Models

Y = X5y + Z fize) + et
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(a) Load prediction for 2019 using GAM.
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where ) is the intercept, X; = [z11,...,2¢q] and (e¢) is an i.i.d. random noise.

with coefficient B; € R/ where m; is the chosen spline basis dimension

b-Spline Basis Functions

(b) A GAM model and its spline basis.
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Boosting Models

e Class of machine-learning models that combine sequentially weak learners (e.g. decision trees) building a complex
regression model,

* Each new simple model added to the ensemble compensates for the weaknesses of the current ensemble,

* CatBoost is usually chosen for its fast optimization and ability to handle categorical variables data (especially calendar data),
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Aggregation of Experts

Exponentially Weighted Average (EWA)

-1
e_n Zf;:l E-‘? (mk,s)

S e (i)

=1

o~

Pkt =

Polynomial weighted averages with multiple learning rates (ML-Poly)

> setn >0

> set initial weights to pj; = 1/N

> initialize y; = ZN:l pj1fia

J
> fort=2,..., T

» for each expert j, pick the learning rates:

M1 =1/ (1+ 3 (s, ys) — I(fis,¥5)))

_ R:(8;)"
» update the weights: pj: = 1j.¢ 1%

» then aggregation: y; = Ejv_l Pt
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