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Résumé. Cet article présente un Data Challenge axé sur l’amélioration de la prévision
de la demande nette d’électricité à court terme dans le contexte d’un réseau électrique
décentralisé. L’intégration croissante des sources d’énergie renouvelables et les incertitudes
liées à leurs fluctuations soulignent la nécessité d’une prévision précise de la demande. Les
participants du challenge ont pour objectif de prévoir la consommation nette, c’est à dire
la consommation totale moins la production renouvelable – solaire et éolienne –, en France,
en utilisant des données disponibles à différentes résolutions géographiques (régionales et
nationales), ainsi que des données de prix de l’électricité. Ce travail présente d’abord le con-
texte de la prévision de demande nette en électricité, puis présente les modèles de prévision
proposés comme benchmarks aux participants.

Mots-clés. Data Challenge, Apprentissage automatique, Modélisation statistique, Pro-
duction d’énergie renouvelable.

Abstract. This article presents a Data Challenge focused on improving short-term elec-
tricity net demand forecasting in the context of a decentralized power grid. The complexities
arising from the increasing integration of renewable energy sources, and the uncertainties
associated with their fluctuations, underline the need for accurate demand forecasting. Chal-
lenge participants aim to forecast net consumption, i.e. total consumption minus renewable
production – solar and wind –, in France, using data available at different geographical reso-
lutions (regional and national), as well as electricity price data. This paper first presents the
context of the problem of net electricity demand forecasting, and then presents some of the
interesting solutions produced for the challenge.

Keywords. Data Challenge, Machine Learning, Statistical Modelling, Renewable Energy
Production.

1 Context and motivations

The effective operation of the electrical system relies on maintaining a balance between elec-
tricity supply and demand. Since electricity cannot be stored, its production needs to be
constantly adjusted to match consumption. Providing accurate forecasts for short-term elec-
tricity demand is therefore crucial for all participants in the energy market. The shift towards
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a decentralized electricity network introduces new uncertainties, which pose additional chal-
lenges for demand forecasting. The increasing contribution of renewable energy sources like
solar and wind power, brings fluctuations and intermittency to the electricity market. These
fluctuations and intermittency occur at various spatial scales due to the presence of wind
farms and photovoltaic power plants. The Covid crisis, along with the current economic
downturn, add further complexity to forecasting due to the non-stationarity in consump-
tion patterns (Alasali et al., 2021). The availability of new geolocalized data and individual
electricity consumption data can be exploited by models that are able to take advantage
of additional information and help in minimizing forecast uncertainty (Obst et al., 2021,
de Vilmarest and Goude, 2021). Furthermore, recent advancements in adaptive forecasting
algorithms have demonstrated improvements in forecasting quality, particularly for aggregate
load forecasting (Brégère and Huard, 2022, Antoniadis et al., 2022). However, most existing
research overlooks the valuable information available at different spatial or relational scales.
The aim of the EDF’s FNL Challenge is therefore to focus on methods that can take into
account geolocalized data to forecast net demand over France: in particular, the aim is to
model renewable electricity production as accurately as possible.

With the announcement of the Challenge and the call for participation within EDF,
the organisers provided a starter kit containing pre-filled code notebooks designed to help
participants familiarise themselves with the context of the problem. The starter kit includes
a document that motivates the challenge, provides background information and describes
the technical aspects of the forecasting problem. It also includes the datasets of interest,
code for running a typical pipeline to handle the task (i.e. data loading and visualisation),
and a number of basic models that provide a performance benchmark for the problem, with
ready-to-use optimisation modules. Section 2 describes all of these elements, followed by
Section 3 which presents the solutions produced in advance of the challenge.

2 Net Load Forecasting in France

2.1 Datasets

Two consumption datasets are available for the challenge: a regional dataset Dr and a
national dataset Dn. Each of them includes meteorological information (temperature, wind,
cloud cover, etc.) and calendar information (time of day, type of day, holiday, etc.), enabling
net demand to be forecast. A price dataset Dp is also available, with information on day
ahead prices. For the challenge, the initial training period T tr

init runs from 2016-06-01 00:00 to
2021-06-01 23:30. The Covid containment periods (from 2020-03-17 to 2020-05-10, then from
2020-10-30 to 2020-12-15, and finally from 2021-04-03 to 2021-05-03) have been invalidated.
The initial test period T te

init runs from 2021-06-02 00:00 to 2022-06-01 00:00:00. As the test
period includes data drifts due to the sobriety period (Doumèche et al., 2023), we have
retained only the last week of each month and the entire month of May 2022 in the test
dataset. The remaining weeks have been added to the training dataset, we denote those
weeks by ∆T tr. So, the final training period T tr

fin and test period T te
fin can be expressed as

T tr
fin = T tr

init ∪∆T tr and T te
fin = T te

init \∆T tr (Figure 1).
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Figure 1: Training and test periods. Orange corresponds to T tr
fin and green to T te

fin .
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Figure 2: Map of the French mainland with
its 12 administrative regions, and 32 weather
stations appearing as black dots.

Regional dataset. In this dataset, 12 ad-
ministrative regions of France are consid-
ered: Hauts de France, Normandie, Ile
de France, Grand Est, Bretagne, Pays
de la Loire, Centre Val de Loire, Bour-
gogne, Franche Comte, Nouvelle Aquitaine,
Auvergne Rhone Alpes, Occitanie, and
Provence Alpes Cote d’Azur. Note that
Corse is not part of the study. Each region
contains between 1 and 5 weather stations,
and the meteorological variables are aggre-
gated with a weighted average over these sta-
tions. Finally, a linear interpolation is used
to obtain half-hourly data.

National dataset. The data in Dn are of
the same type as those in Dr, and differ only
in their geographical resolution.
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Figure 3: Averaged Net Load over time, for T tr
fin and T te

fin .

Price dataset. The price data in Dp corre-
spond to the electricity spot price in France. The data have been coupled with consumption
and production data, since they are highly correlated: indeed, with very low or even zero
marginal costs, renewable energy types are the first to be called upon. If renewable energy
is sufficient to cover all demand, the price of spot electricity is close to 0€ per MWh.
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2.2 Evaluation

The loss function ℓ is the sum of the RMSE on the min and the max daily predictions:

ℓ(y, ŷ) =

√√√√ 1

n

n∑
d=1

(min y48d:48(d+1) −min ŷ48d:48(d+1))2+

√√√√ 1

n

n∑
d=1

(max y48d:48(d+1) −max ŷ48d:48(d+1))2

where n is the number of days in the dataset, y is the observed data at half-hourly time
intervals and ŷ the prediction at half-hourly time intervals.

2.3 Models

In this section, we present the models developed as part of the Challenge to serve as bench-
mark.Then, in order to make the most out of these models, participants are introduced to
expert aggregation.

2.3.1 Baseline Models

Persistence Model. Persistence models are among the simplest forecasting models. The
forecast at time t is given by the value of the signal observed at t−∆t, where ∆t is the only
parameter of the model. In this case, we choose a 1-day persistence.

Gradient Boosting Models. Gradient Boosting refers to a class of machine learning models
that combine sequentially weak learners, typically decision trees, to create a strong final
predictive model. The process involves iteratively fitting new models to the residual errors
of the previous models, and this way to gradually improve the overall prediction. At each
iteration, the new model is trained to minimize a loss function by adjusting its parameters in
the direction that reduces the gradient of the loss. We use XGBoost and CatBoost (Chen and
Guestrin, 2016, Prokhorenkova et al., 2019) as reference implementations for the Challenge.

Generalized Additive Models. Generalized Additive Models (GAMs) is a class of semi-
parametric regression models that was first developed in (Hastie and Tibshirani, 1986) and
(Wood, 2017) and are now widely used in electricity consumption forecasting. Indeed, GAMs
are interesting in practice, since their additive aspect makes them highly explainable, but
this also means that the choice of variables must be meticulous. Consider a prediction model
aiming to predict for each time t a variable of interest yt using (xj)j=1...d explanatory variables

such that yt = Xtβ0 +
∑d

j=1 fj(xt,j) + εt, where β0 is the intercept, Xt = [xt,1, . . . , xt,d] and
(εt) is i.i.d. random noise. Here we consider that each non-linear effect fj is decomposed on
a spline basis (Bj,k) with coefficient Bj ∈ Rmj where mj is the chosen spline basis dimension,
such that fj(x) =

∑mj

k=1 βj,kBj,k(x). These coefficients are then estimated by minimizing
the ridge-regression criterion ensuring the smoothness of the functions fj by controlling the
second derivatives (Wood et al., 2016). Three GAM models were developed for the challenge,
a model forecasting net load, a model forecasting load and total renewable production, and a
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model forecasting load, wind production and solar production. These models are respectively
referred to as GAM-1, GAM-2 and GAM-3.

2.3.2 Aggregation of Experts

Several models have been developed in the literature, each with its own distinctive features,
which may also complement each other. Expert aggregation is an ensemble technique that
allows to benefit from the advantages of each model: we can combine them using robust online
aggregation of experts, as developed in (Cesa-Bianchi and Lugosi, 2006). For each instant
in the prediction, a weight is assigned to each expert according to its previous forecasts: the
better the past forecasts, the greater the weight at time t. Let xj,t be the j

th expert at time t
and pj,t its corresponding weight, then the expression of the predicted load at time t is given

by ŷt =
∑K

j=1 pj,txj,t, where K is the number of experts in the mixture. One way to compute
the weights is to use polynomially weighted averages with multiple learning rate (ML-Poly),
an algorithm developed in (Gaillard et al., 2014). A key advantage lies in the upper bound
of the algorithm’s average error:

Average error
of the algorithm

≲ Average error of the
best combination of experts

+

√
Number of experts

Number of days
(1)

Over time, the algorithm’s average performance will converge to match the performance of
the best experts.

3 Results

3.1 Numerical Results

Numerical results at the national level are shown in Table 1. Note that the baseline models
were simplified and were intended to serve as a benchmark for the Challenge participants.

Team Model Loss (MW)

Final Strike LGBMR 2747
Les Equilibristes xGB 3040
Data Rangers Mixture 3098
Les Green Code xGB 3172
Les Syracusains GAM 3257

Baseline GAM-1 8304
Baseline GAM-3 4929
Baseline xGB 14383
Baseline CAT 19569
Baseline FF 13342
Baseline Mixture (ML–Poly) 5091
Baseline Mixture (Uniform) 8823

Table 1: Numerical performance in MAPE (%) and RMSE (MW) for T te
fin at national level.
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The hyperparameters of the baseline models above were optimized using the CMA-ES
algorithm (Hansen et al., 2003). 14 teams out of 46 did a better score than the baseline on the
test set. The best solutions compute new features, perform a cross validation with multiple
models while tuning their hyperparameters and select the best model in average on the folds.
The Final Strike used a Light Gradient Boosting Machine Regressor (Ke et al., 2017), Les
Equilibristes used two xGB models: one for the load and one for the production. The Data
Rangers aggregated a GAM per instant (7%), an xGB model (80%) and a Bidirectional
Recurrent Neural Network (Schuster and Paliwal, 1997) per instant (13%).

3.2 Aggregation of Experts

Figure 4 shows the weights associated with each baseline expert.

(a) Weights associated to the experts. (b) Contibution of the experts.

Figure 4: Aggregation of the baseline models for T te
fin .

4 Perspectives

These models do not take into account the spatial aspect of the data: data can be represented
using graphs. We believe it is interesting to make use of the deep relationships that exist
between the regions for forecasting as their features are strongly correlated, see Figure 5, and
therefore to develop graph neural networks (GNNs) models for the Challenge which could be
then be used as novel experts in an aggregation.
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Figure 5: Correlation between the regions after a dimension reduction of the feature vector.

In graph theory, objects are represented by nodes, and the relationships between them
are represented by edges. A graph G is a couple (V , E) where V is a set of nodes and E a set of
edges, i.e. E = {(eij) = vivj | vi, vj ∈ V}. These graphs can be represented using adjacency
matrices defined as A = (Aij) ∈ RN×N such that Aij = 1 if and only if eij ∈ E . Instead of a
binary-weighted adjacency matrix, a more flexible weight matrix W with real-valued weights
can be utilized. In the context of the Challenge, regions and the hidden links between them
can respectively be seen as nodes and edges. Both regression and classification tasks can be
performed on graphs at different levels: node-level, edge-level and graph-level, see Figure 6.

Figure 6: Various hierarchies of tasks
in a graph representing edge, node,
subgraph, and graph (Waikhom and
Patgiri, 2022).

• The node-level focuses on individual nodes
within a graph. It involves analyzing the prop-
erties or attributes of each node. For example,
in the context of electricity forecasting, a node-
level task could be to predict the consumption
for each region.

• The edge-level pertains to the analysis of the
edges or connections between nodes in a graph.
It involves examining the relationships, weights,
or properties associated with each edge. For ex-
ample, in the context of electricity forecasting,
an edge-level task could be to quantify the rela-
tionships between the regions.

• The graph-level refers to the analysis of the
entire graph structure as a whole. It involves examining global properties, overall con-
nectivity, or emergent behaviors of the graph. For example, in the context of electricity
forecasing, a graph-level task could be to predict the national consumption.

In the context of GNNs, message passing refers to the process of exchanging information
between nodes, edges, and the global level of a graph (see Figure 7). Message passing is a
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fundamental operation in GNNs that enables nodes to gather and aggregate information from
their neighbors, incorporate it into their own representations, and propagate it throughout the
graph. Hence, a GNN corresponds to a set of layers that use the message-passing mechanism.
Node representations are therefore updated as the graph is iterated through (in other words,
at each layer traversed, representations are updated).

Vn

En

Un

Vn+1

En+1

Un+1

ϕv

ϕe

ϕu

ρVn→En

ρEn→Vn

ρEn→Un

Message passing layer

D C

BA

D C

BA

Figure 7: Example of a message passing layer in a GNN. Vn, En and Un respectively refer
to node, edge, and global level at stage n. ϕ are update functions and ρ are propagation
functions.

A message passing layer therefore enables a node to update its embedding by taking into
account information from its neighbors: thus, by propagation, dmessage passing layers enable
a node to take into account information from its dth-order neighbors. Using the notations of
Figure 7, the message passing mechanism for each level can be written as follows:

• Vn+1 = ϕv (Vn ; ρEn→Vn , ρUn→Vn)

• En+1 = ϕe (En ; ρVn→En , ρUn→En)

• Un+1 = ϕu (Un ; ρVn→Un , ρEn→Un)

In a standard neural network, such as a feedforward neural network, the update process is
typically a local operation. In contrast, message passing in GNNs is a more dynamic and
relational process allowing nodes to capture both local and global graph structures and de-
pendencies. This relational approach enables GNNs to capture complex graph patterns and
dependencies that cannot be easily captured by standard neural networks, making them suit-
able for tasks involving graph-structured data. The message passing mechanism can also be
seen as a special case of graph convolution. Convolutional operations, originally developed
for regular grid-structured data such as images, enable the extraction of meaningful features
by considering the local neighborhood of each element (LeCun et al., 1995). By extending
convolution to graphs, we can capture and analyze the structural patterns and relationships
present in the graph data, see (Daigavane et al., 2021) for a visual understanding. Graph con-
volution extracts localized features, where information from neighboring nodes is aggregated
to compute features for each node allowing to capture the local connectivity and dependen-
cies between nodes. It also helps to leverage the inherent structure and connectivity of the
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graph data, uncover hidden patterns (e.g. the relationship between the consumptions of two
different regions), and make informed predictions (e.g. the consumption of a given region)
based on the relationships between nodes.

Let G = (V , E) be a graph, and for each node v ∈ V , we associate a feature vector Xv

which corresponds to the explanatory variables of the corresponding node. Each node v ∈ V
has an associated label yv and we want to learn a representation hv such that, for a GNN
f , we have f(hv) = yv. To do this, we iteratively update the representations of a node by
aggregating the representations of its neighbors in the graph. The representation of a node
v at iteration k, denoted h

(k)
v can be expressed as

h(k)
v = UPDATE(k)

(
h(k−1)
v ; AGGREGATE(k)

(
h(k−1)
v ;

{
h(k−1)
u | u ∈ Nv

}))
,

h(0)
v = Xv,

(2)

where UPDATE usually involves combining the prior representations with the current
one and a linear mapping. AGGREGATE is usually a combination of a pooling function
(max, sum,...) with an activation function (ReLU, tanh,...). Two approaches are being
studied for the Challenge: a basic graph convolutional network (GCN) model (Kipf and
Welling, 2017) and the SAGE model (Hamilton et al., 2018). These models allow a gain of
around 0.2% in the aggregation.
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