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Leveraging Graph Neural Networks to Forecast
Electricity Consumption
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We fitted some splines based on the observed temperatures and loads,

Context and then we evaluated the learned splines with some generated
Accurate electricity demand forecasting is essential for several reasons, temperatures, to which we added a multivariate centered random noise to
especially as the integration of renewable energy sources and the represent the links between the regions.

transition to a decentralized network paradigm introduce greater Ausvergne_ Rhone Alpss, SNR = 3.264 SRR p—

complexity and uncertainty. The proposed methodology leverages graph- === max=365 |
based representations to effectively capture the spatial distribution and 201 KO3 25
relational intricacies inherent in this decentralized network structure. We v
conduct experiments on electricity load forecasting, in both a synthetic
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mutual information criterion:

________________ :/ @¢ AN maxMI(¥g,Gs) = H(Yg) — H(Yg | G = G5, X = X;)

Gs

where G¢ and X¢ are the explaining subgraph and features, H is the
entropy, and ¥ is the vector of predictions made with graph g.

and a real framework considering the French mainland regions. PSS P PP P
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Notations e "
Denote b (a) Temperature generated in Auvergne- (b) Load generated with a cubic spline ba-

A th y ahborhood of . Rhone-Alpes. sis of rank 10 in Auvergne-Rhoéne-Alpes.
« N, the neighborhood of node v, _ -
. hY) the representation vector of node v at iteration k, Explalnablllty
* X, the feature vector of node v, We want to be able to extract important sub-graphs to find links between
« W the learned weight matrices, and b the learned bias vector. regions. To do this, we used GNNExplainer, developed by Ying et al,
Graph Neural NEtWOka which calculates a mask on the edges of the graph by maximizing a

Explanation Graph for June 1st 2019. Explanation Graph for june 1st 2019.
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Message passing layer

o

$a on
Edge Weight
Edge Weight

=

0.2 0.2

hY9 = UPDATE® (hf,"‘”; AGGREGATE®) (hf;k_l): {hﬁk_l) |u € Nv}))

hy= X,
Classical GNN models (&) Synthetic datasct (5 — p(Wa)) (1) Real dataset,

GCNs were introduced by Kipf and Welling in 2016 and aim at learning Expert Agg regation

representations. The update rule of a GCN is given by: . . L
P P J / Several models have been developed in the literature, each with its own

hl@) = X;, distinctive features, which may also complement each other. Expert
(1+1) 1 0 aggregation is an ensemble technique that allows to benefit from the
h; =0 ;W(l)hj + b advantages of each model.
j c Ni l] — gcnid = gcnsp = gcn di = gcn gl gen_dt sage id = sage sp sage di = sage g] = sage dt == gam
Weights associated with the experts Weights associated with the experts
Where CL] — \/l]\/‘l”]\/}‘ 1.0 - 1.0
SAGE was introduced by Hamilton in 2018 and aim at learning o1
aggregation functions. The learned aggregation function is given by: 2% g°°
2 2
hglﬂ) =0 (W(l) [hl@| max {O‘ (Wpoolh}l) + b),‘v’vj S J\Q}D
where Wy IS a learnable pooling weight matrix. H
|"fe”‘|n9 Graphs from Data Regardless of the dataset, GAM remains dominant in aggregation, but
« Geographical Data: we compute a similarity matrix based on the GNNs prove particularly useful in the dataset with information between
geographical positions of the nodes without considering the regions.
topography
 Electricity & Weather Data: we first project the d-dimensional signal RGSUItS | | |
into a 1-dimensional space and then we can apply algorithms (DTW, For each model/matrix pair, we ran a grid-search hyperparameter
GL3SR), distances... optimization, then retained the best model on the validation set. GNNs

bring diversity to the aggregation when datasets contain information

‘Tm 1 between regions. Moreover, SAGEs perform better on average than GCNs.
h h h Model Real Dataset Synthetic Dataset tE = p(W.)) | Synthetic Dataset (2 =T
0ee MAPE (%) RMSE (MW)| MAPE (%) RMSE (MW) |MAPE (%) RMSE (MW)
GAM-Regions 1.48 1018 1.11 662 1.75 1043
Feed Forward 1.54 1071 382 3141 149 3213
GCN-identity 566 3949 1.43 834 2.16 1259
GCN-space 2.07 1452 1.26 749 1.98 1169
. ol GCN-distsplines 204 1404 129 764 201 1185
GCN-gl3sr 595 4210 1.25 743 1.97 1160
GCN-dtw 1.82 1276 126 753 1.99 1171
SAGE-identity 438 3021 1.25 755 1.78 1066
D at a sets SAGE-space 1.96 1350 129 778 1.85 1112
SAGI-distsplines 2.06 1410 1.22 741 1.84 1116
- - - SAGE-g13 1.78 1234 1.15 701 1.92 1171
To analyze our models and the contribution of GNNs when there is an R 1‘901335 S T
underlying graph structure, we generated datasets with and without links Mixture (Baseline) 131 925 LI1 662 176 1044
, Mixture (GNNs) 1.48 1092 1.14 683 1.98 1171
between regions. Mixture (Baseline | GNNs) 1.13 844 1.10 661 1.76 1050
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