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Motivations
Industrial context

Anticipation of the consumption of electricity and renewable energy production is a major challenge
for EDF, especially for electricity market operations:

⊳ Maintaining a balance between electricity supply and demand is important for grid stability;
⊳ Optimizing the production fleet and demand response;
⊳ Buying and selling on electricity markets

New geolocated data can be exploited by spatial models — such as GNNs — and improve forecasts.
(Obst, Vilmarest, and Goude 2020; Vilmarest and Goude 2021)

Figure 1 – Electricity consumption.
Figure 2 – Renewable energy production. Figure 3 – Electricity prices.
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Motivations
Academic context

⊳ You have a large dataset of 𝑁  time series with a limited number of observations 𝑇 ;
⊳ You want to have 𝑁  accurate forecasts but you do not have a huge budget.

Figure 4 – Timeseries may be hard to order.
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Motivations
Approaches

We have tested three different approaches:

Approach 1 – Individual: Train 𝑁  individual models.

Approach 2 – Cascade: Transfer models weights through a tree structure.

Approach 3 – GNNs: Train a single Graph Neural Network.
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About the dataset

⊳ The dataset¹ consists of aggregated half-hourly
residential smart meter electricity consump-
tion data collected by four UK Distribution Net-
work Operators (DNOs);

⊳ 120, 000 low voltage feeders;
⤷ very heterogeneous data;

⊳ Dataset spans January 2024;

⊳ Focus on Oxford’s urban area.

Figure 5 – Subset of 4 nodes of Oxford’s urban area.

¹https://weave.energy/
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About the models
Feedforward Neural Networks & Graph Neural Networks

Feedforward Neural Networks

⊳ The general update rule of a hidden vector is
given by:

𝒉(ℓ+1) = 𝜎(𝑾 (ℓ+1)𝒉(ℓ) + 𝒃(ℓ+1))

where:
⤷ 𝑾 (ℓ+1) ∈ ℝ𝑑ℓ+1×𝑑ℓ  is a learned weight ma-

trix;
⤷ 𝒃(ℓ+1) ∈ ℝ𝑑ℓ+1  is a learned bias vector;
⤷ 𝜎 is a non-linear activation function (e.g.

ReLU, tanh).

Graph Neural Networks (Gori and Monfardini 2005)

⊳ The general update rule for a node 𝑢 is
given by:

𝒉(ℓ+1)
𝑢 = 𝜙(𝒉(ℓ)

𝑢 , ⨁𝑣∈𝒩𝑢
𝜓(𝒉(ℓ)

𝑢 , 𝒉(ℓ)
𝑣 , 𝒆𝑢𝑣))

where:
⤷ 𝒩𝑢 is the set of neighbors of 𝑢;
⤷ 𝜙 and 𝜓 are respectively update and message

functions;
⤷ ⨁ is the aggregation operator;
⤷ 𝒆𝑢𝑣 is the edge representation between 𝑢 and 𝑣.
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About the models
Visual understanding of a GNN
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Two examples of graph convolutions
Graph Convolutional Networks & Graph Attention Networks

Graph Convolutional Networks
(Kipf and Welling 2016)

⊳ The update rule for a node 𝑢 is
given by:

𝒉(ℓ+1)
𝑢 = 𝜎(∑𝑣∈𝒩𝑢∪{𝑢} 𝑐𝑣𝑢𝚯(ℓ)𝒉(ℓ)

𝑣 )

where

𝑐𝑣𝑢 = 𝑒𝑣𝑢

√𝑑𝑣𝑑𝑢
.

Graph Attention Networks
(Veličković et al. 2017; Brody, Alon, and Yahav 2022)

⊳ The update rule for a node 𝑢 is
given by:

𝒉(ℓ+1)
𝑢 = 𝜎(∑𝑣∈𝒩𝑢∪{𝑢} 𝛼𝑢𝑣𝚯(ℓ)

𝑡 𝒉(ℓ)
𝑣 )

where

𝛼𝑢𝑣 =
exp(𝒂⊤𝜎(𝚯(ℓ)

𝑠 𝒉(ℓ)
𝑢 + 𝚯(ℓ)

𝑡 𝒉(ℓ)
𝑣 + 𝚯(ℓ)

𝑒 𝑒𝑢𝑣))

∑𝑘∈𝒩𝑢∪{𝑢} exp(𝒂⊤𝜎(𝚯(ℓ)
𝑠 𝒉(ℓ)

𝑢 + 𝚯(ℓ)
𝑡 𝒉(ℓ)

𝑘 + 𝚯(ℓ)
𝑒 𝑒𝑢𝑘))

.
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About tree algorithms

Minimum Spanning Trees

⊳ Apply to undirected graphs;

⊳ Select a subset of edges connecting all
nodes with:

⤷ Minimum total edge weight;

⤷ No cycles;

⊳ Efficiently computed using Kruskal’s or
Prim’s algorithms;

⊳ Commonly used in network design, cluster-
ing, and optimization problems. (Cong and
Zhao 2015)

Minimum Cost Arborescences

⊳ Apply to directed graphs;

⊳ Build a rooted spanning tree with:

⤷ Minimum total cost of directed edges;

⤷ Reachability from the root to all nodes;

⊳ Solved using Chu-Liu Edmonds’ algorithm
(Chu and Liu 1965; Edmonds 1967);

⊳ Useful for hierarchical structures, flow net-
works, and decision trees.
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Weight Cascading Process
Building a diffusion tree

⊳ We compute a “proximity” matrix
between all nodes;

⤷ distance-based (e.g. euclidean
distance);

⤷ spectral-based:

𝑳 = 𝑰 − 1
2

(𝚽1
2 𝑷 𝚽−1

2 + 𝚽−1
2 𝑷 ⊤𝚽1

2 )

where 𝑷  is a transition matrix and
𝚽 a matrix with the Perron vector
of 𝑷  in the diagonal and zeros
elsewhere (Chung 2005);

⊳ We apply a MST/MCA algorithm to
the proximity matrix.

Figure 6 – Distance matrix used to
build the diffusion tree.

Figure 7 – Diffusion tree built from
the distance matrix.
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Weight Cascading Process
On the prototype selection

⊳ The prototype 𝒑 is the root of the cas-
cade and acts as a source of weight
diffusion;

⊳ Three strategies:

⤷ Centroid: mean of all points; effi-
cient but sensitive to outliers;

⤷ Medoid: most central real point
(minimum of pairwise distances); ro-
bust to outliers;

⤷ Betweenness centrality: node with
highest betweenness centrality in
graph; captures topological impor-
tance. Figure 8 – Centroid and medoid strategies.

Eloi Campagne — EDF & Centre Borelli 10



Weight Cascading Process
On the prototype selection

⊳ The prototype 𝒑 is the root of the cas-
cade and acts as a source of weight
diffusion;

⊳ Three strategies:

⤷ Centroid: mean of all points; effi-
cient but sensitive to outliers;

⤷ Medoid: most central real point
(minimum of pairwise distances); ro-
bust to outliers;

⤷ Betweenness centrality: node with
highest betweenness centrality in
graph; captures topological impor-
tance. Figure 9 – Betweenness centrality strategy.

Eloi Campagne — EDF & Centre Borelli 10



Weight Cascading Process
On the algorithm

Cascading algorithm

⊳ Consists of 2 stages:

⤷ 𝒜0: train prototype model on 𝒑;

⤷ 𝒜1: refine each model using parent weights;

⊳ Single-step: prototype weights broadcast to all cluster
members;

⤷ Can use uniform or distance-based budgets;

⊳ Multi-step: weights flow through a tree 𝒯 (MST/MCA) from
parent to child;

⤷ Enables gradual diffusion.

Figure 10 – Single-step cascade for a
total budget of 100.
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Weight Cascading Process
On the algorithm

Cascading algorithm

⊳ Consists of 2 stages:

⤷ 𝒜0: train prototype model on 𝒑;

⤷ 𝒜1: refine each model using prototype weights;

⊳ Single-step: prototype weights broadcast to all cluster
members;

⤷ Can use uniform or distance-based budgets;

⊳ Multi-step: weights flow through a tree 𝒯 (MST/MCA) from
parent to child;

⤷ Enables gradual diffusion.
Figure 11 – Multiple-step cascade for a

total budget of 100.
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About the budget
What is “fair” ?

⊳ The learning models deployed across these nodes share a global computational budget 𝐵, and
operate using a fixed batch size:

⤷ Individual budgets: ∀𝑢 ∈ 𝒱, 𝐵𝑢 = 𝐵
𝑁  and models weights are randomly initialized;

⤷ Cascade budgets

⊳ Uniform: ∀𝑢 ∈ 𝒱, 𝐵𝑢 = 𝐵
𝑁 , prototype’s model weights are randomly initialized and each child

inherits the parent’s weights;
⊳ Flexible: ∀𝑢, 𝑣 ∈ 𝒱, 𝑢 → 𝑣, ∑𝑢→𝑣 𝑑𝑢𝑣 = 1, 𝐵𝑣 = ⌈𝑑𝑢𝑣𝐵⌉; (∑𝑣∈𝒱 𝐵𝑣 ≃ 𝐵)

⤷ GNN budget: 𝐵.
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Cascade diffusion experiments on synthetic data

⊳ Both single-step and multi-step cascades outperform individual models especially when the
budget is small;

⊳ Multi-step cascades outperform single-step cascades in some specific cases but it is clearly not always
the case;

⤷ Investigating under which conditions multi-step cascades outperform single-step!

⊳ “Well”–chosen diffusion trees significantly perform better than random trees.
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When Graph Neural Networks Come Into Play
⊳ Designing a diffusion tree 𝒯: train a GAT(v2) model and extract attention weights to then build a

diffusion tree;

⊳ A global model: GNNs can also be used as a global model by relying on the spatial links between nodes
to efficiently compute representations.
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GNN experiments on real data

Figure 12 – Comparison of RMSE per timeseries for a GATv2 and a FFNN with 𝐵𝑢 = 10.
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Conclusion

⊳ Cascading through MSTs or MCAs enables low-cost, scalable model refinement;

⊳ GNNs can serve as:
⤷ a tree generation method to diffuse weights across sites;
⤷ a single global model that captures structural information across sites.
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Thanks for your attention!

Feel free to reach out to me at eloi.campagne@ens-paris-saclay.fr.
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Appendix
Cascading algorithm
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