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Motivations

Anticipation of the consumption of electricity and renewable energy production is a major challenge
for EDF, especially for electricity market operations:

> Maintaining a balance between electricity supply and demand is important for grid stability;
> Optimizing the production fleet and demand response;
> Buying and selling on electricity markets

New geolocated data can be exploited by spatial models — such as GNNs — and improve forecasts.
(Obst, Vilmarest, and Goude 2020; Vilmarest and Goude 2021)

Figure 2 - Renewable energy production. Figure 3 - Electricity prices.

Consommation

Figure 1 - Electricity consumption.
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Motivations

Academic context

> You have a large dataset of N time series with a limited number of observations T’
> You want to have N accurate forecasts but you do not have a huge budget.

Figure 4 - Timeseries may be hard to order.
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Motivations

We have tested three different approaches:

Approach 1 - Individual: Train N individual models.

Approach 2 - Cascade: Transfer models weights through a tree structure.

Approach 3 - GNNs: Train a single Graph Neural Network.
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About the dataset

01 100-MAIN ROAD TOOT BALDON 01 160-BROAD CLOSE TILBURY FARM
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> The dataset' consists of aggregated half-hourly bou) | M
residential smart meter electricity consump- RERLIN
tion data collected by four UK Distribution Net-
work Operators (DNOs);

02 060-VIOLET WAY 02 160-BROAD CLOSE TILBURY FARM

> 120,000 low voltage feeders;
Y very heterogeneousdata, | | | 7
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> Dataset spans January 2024;

> Focus on Oxford's urban area.

ooooo

Figure 5 - Subset of 4 nodes of Oxford’s urban area.

'https://weave.energy/
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About the models

Feedforward Neural Networks & Graph Neural Networks

Feedforward Neural Networks

> The general update rule of a hidden vector is
given by:

h(£+1) — 0.(w(£+1)h(£) 4+ b(£+1))

where:

L WD ¢ Rideaxde s a learned weight ma-
trix;

L p+D) e R+ js a learned bias vector;

% o is a non-linear activation function (e.g.
ReLU, tanh).

Graph Neural Networks (Gori and Monfardini 2005)

> The general update rule for a node u is
given by:

D = o (R0, @, w(hD,RY ey, )

where:

& N, is the set of neighbors of v;

5 ¢ and ¢ are respectively update and message
functions;

- @ is the aggregation operator;

S e,, IS the edge representation between » and v.
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About the models

Visual understanding of a GNN

hj =
- fasxrtgate(‘) o v\. .
@ #-

‘-—' f;‘pddk( 2)
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Two examples of graph convolutions

Graph Convolutional Networks & Graph Attention Networks

Graph Convolutional Networks Graph Attention Networks
(Kipf and Welling 2016) (Velickovi¢ et al. 2017; Brody, Alon, and Yahav 2022)
> The update rule for a node u is > The update rule for a node u is

given by: given by:

(e+1) _ O p ) (e+1) _ (0) 1, (€)
hu _ J(ZveNuU{u} Cvu@( )hv ) hu _ U(ZveNuU{u} auve)t hv )
where where
_ _ G T 0 1 (0) (€) 1, (&) (o)
Cou dvdu' o exp (a O’(@S h,”+0©, h;’ + O, euv))

uv

v 70O+ O+ 000 ))
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About tree algorithms

Minimum Spanning Trees Minimum Cost Arborescences

> Apply to undirected graphs; > Apply to directed graphs;

> Select a subset of edges connecting all > Build a rooted spanning tree with:
nodes with:

& Minimum total cost of directed edges;

=+ Minimum total edge weight;  Reachability from the root to all nodes;

= No cycles; > Solved using Chu-Liu Edmonds’ algorithm

> Efficiently computed using Kruskal's or (Chu and Liu 1965; Edmonds 1967);

Prim’s algorithms; > Useful for hierarchical structures, flow net-

> Commonly used in network design, cluster- works, and decision trees.
ing, and optimization problems. (Cong and
Zhao 2015)
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Weight Cascading Process

Building a diffusion tree

> We compute a “proximity” matrix
between all nodes;

L distance-based (e.g. euclidean
distance);
o spectral-based:

1
L=1- E(<I>%P<I>-% +® 2P %)

where P is a transition matrix and
® a matrix with the Perron vector
of P in the diagonal and zeros
elsewhere (Chung 2005);

> We apply a MST/MCA algorithm to
the proximity matrix.
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Figure 6 - Distance matrix used to
build the diffusion tree.
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Figure 7 - Diffusion tree built from
the distance matrix.



Weight Cascading Process

On the prototype selection

> The prototype p is the root of the cas-
cade and acts as a source of weight
diffusion;

> Three strategies:

& Centroid: mean of all points; effi-
cient but sensitive to outliers;

L Medoid: most central real point
(minimum of pairwise distances); ro-
bust to outliers;

N
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Figure 8 - Centroid and medoid strategies.
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Weight Cascading Process

On the prototype selection

> The prototype p is the root of the cas- @ o setveenness
cade and acts as a source of weight oo
diffusion;

> Three strategies:

L
L
L Betweenness centrality: node with /

highest betweenness centrality in

graph; captures topological impor-

tance Figure 9 - Betweenness centrality strategy.
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Weight Cascading Process

On the algorithm

Cascading algorithm

> Consists of 2 stages:
A, train prototype model on p;
- A, refine each model using parent weights;

> Single-step: prototype weights broadcast to all cluster
members;

> Can use uniform or distance-based budgets;

>
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Figure 10 - Single-step cascade for a
total budget of 100.
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Weight Cascading Process

On the algorithm

Cascading algorithm

> Consists of 2 stages:
A, train prototype model on p;
 A,:refine each model using prototype weights;

>

> Multi-step: weights flow through a tree 7 (MST/MCA) from
parent to child;

L Enables gradual diffusion.
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Figure 11 - Multiple-step cascade for a
total budget of 100.
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About the budget

> The learning models deployed across these nodes share a global computational budget B, and
operate using a fixed batch size:

& Individual budgets: Vu € V, B, = £ and models weights are randomly initialized;

> Cascade budgets

> Uniform: Vu € ¥V, B, = £, prototype’s model weights are randomly initialized and each child
inherits the parent’s weights;

> Flexible: Vu,v € V,u —v,3 _ d,, =1,B,=[d,,B]; (>, B, ~B)
— GNN budget: B.
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Cascade diffusion experiments on synthetic data

> Both single-step and multi-step cascades outperform individual models especially when the
budget is small;

> Multi-step cascades outperform single-step cascades in some specific cases but it is clearly not always
the case;

L Investigating under which conditions multi-step cascades outperform single-step!

> “Well"-chosen diffusion trees significantly perform better than random trees.
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When Graph Neural Networks Come Into Play

> Designing a diffusion tree 7: train a GAT(v2) model and extract attention weights to then build a
diffusion tree;
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> A global model: GNNs can also be used as a global model by relying on the spatial links between nodes
to efficiently compute representations.
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GNN experiments on real data

Comparison of RMSE per Timeseries
T

1 == Mean GNN Error
Mean Individual Error
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Figure 12 - Comparison of RMSE per timeseries for a GATv2 and a FFNN with B, = 10.
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Conclusion

> Cascading through MSTs or MCAs enables low-cost, scalable model refinement;

> GNNs can serve as:
> a tree generation method to diffuse weights across sites;
o a single global model that captures structural information across sites.

- Eloi Campagne — EDF & Centre Borelli
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Thanks for your attention!

Feel free to reach out to me at eloi.campagne@ens-paris-saclay.fr.
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Appendix

Cascading algorithm

Algorithm 3 MST Cascade.

1: Input: Data {x;}}¥ ,, distance function between tasks dist (), number of clusters K to split the tasks, clustering
method £ indClusters(), method that finds a prototype for a given cluster £indPrototype() budget for prototype

training b, total budget per cluster B, training procedures 4j and .A;.
2: Output: Refined models { f5 }V,.

: m (Optional) Partition the problem in a number of non-intersecting clusters.
: {Cp}E_, « findClusters({x;}Y,, K)
: {DyHE | + computeDistanceMatrices({Cy},,dist())

3
4
5
6: m Process each cluster independently.
7: for each cluster C do

8

9

T <« computeMsT(D) > Extract the MST with Kruskal’s algorithm

:  p+ findPrototype(C,T) > Compute a cluster prototype within 7~
10:  d + extractTreeWeights(T) > Extract the distance vector from 7
11:  d’ + softmax(d) > Normalize the distance vector using softmax
120 fz + Ao(fo,p,b) > Train the prototype model on cluster data with budget b

13:  for j =1to|d'|do
14 (b); « [(d); - B]

15:  end for

16:  m Refine individual models using allocated budgets.

172 Q@+« 0, Q< enqueue(Q,p) > Initialize a queue with the prototype node for refinement

18:  while - i sEmpty(Q) do

19: Xparent + dequeue(Q)

20: for Xchi1q in childrenOf (Xparent) do

21: Q + enqueue(Q, Xcpid) > Add the children of the processed node in the queue

22: TG00 € Ai( f@pmm , Xchilds Xparent, (D) child) > Refine child model using parent model, child data and
budget

23: end for

24:  end while

25: end for

26: return {5, W

> Compute refinement budget
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